Oxidative Stress and the Molecular Biology of Antioxidant Defenses

Monograph 34
Edited by John G. Scandalios, North Carolina State University

The increase in levels of active oxygen species or free radicals known as oxidative stress induces lesions that impair or kill cells and initiate disease and degenerative processes such as aging, carcinogenesis, and immunodeficiencies. Protective mechanisms have been uncovered in both eukaryotes and prokaryotes and are being vigorously studied at a molecular level, assisting the search for ways of reducing or avoiding oxidative stress. Written and edited by leaders in this growing field, this volume is an essential work of reference for specialists and investigators with wider interests in cell biology, aging and cancer biology.

CONTENTS
The Oxygen Paradox: Biochemistry of Active Oxygen (N. Hauptmann, E. Cadenas); Redox Regulation by the HIV-1 TAR Transcriptional Factor (S. Flores); Oxidative Damage to DNA and Its Repair (S.S. Wallace); The Antioxidative Response Element: Transcriptional Activation by Oxidants during Oxidative Stress in Eukaryotes (T. Rushmore); Transcriptional Regulators of Oxidative Stress Responses (D.J. Jamieson, G. Storl); Oxidative Stress, Gene Expression, and the Aging Process (K.Z. Guyton et al.); Superoxide Dismutases in Bacteria and Pathogen Protists (D. Touati); Superoxide Dismutase: Studies in the Yeast Saccharomyces cerevisiae (E.B. Gralla); Molecular Genetics of Superoxide Dismutases in Plants (J.G. Scandalios); Bacterial Catalases (P.C. Loewen); Biochemistry, Molecular Biology, and Cell Biology of Yeast and Fungal Catalases (H. Ruis, F. Koller); Catalases in Plants: Gene Structure, Properties, Regulation, and Expression (J.G. Scandalios et al.); The Structure of Catalases (J. Bravo et al.); Mediation of Signal Transduction by Oxidants (M.S. Wolin, K.M. Mohazzab-H.);

The Oxidative Burst and Its Roles in Signal Transduction and Response of Stressed Plants (N. Doke); The NADPH Oxidase of Leukocytes (B.M. Babior et al.); Oxidative Burst-mediated Defense Responses in Plant Disease Resistance (M.E. Alvarez, C.J. Lamb); Glutathione Reductase: Regulation and Role in Oxidative Stress (P.M. Mullineux, G.P. Creissen); Oxidative Stress in Mitochondria (C. Richter, M. Schweizer); Oxygen Metabolism and Electron Transport in Photosynthesis (C.H. Foyer); Ascorbate Peroxidase and Monodehydroascorbate Reductase: Key Enzymes for Hydrogen Peroxide-scavenging System in Plants (K. Asada); Oxidants, Antioxidants, and Aging (K.B. Beckman, B.N. Ames); Reactive Oxygen and Apoptosis (D. Fuchs et al.); Role of sod in Neurodegenerative Disease (R.H. Brown); Free Radicals: Dietary Advantages and Disadvantages (O.I. Aruoma); Defense against Photooxidative Damage in Plants (A. Polle); Air Pollution and Free Radical Protection Responses of Plants (A.R. Wellburn, F.A.M. Wellburn)

1997, 904 pp., illus., color plates, index
Cloth $150

ISBN 0-87969-502-1

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-349-1930 (All other locations)
FAX: 516-349-1946
E-mail: cshlpress@cshl.org or WWW Site http://www.cshl.org/
Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500
Review

Prediction and Preparation, Fundamental Functions of the Cerebellum ... 1
Eric Courchesne and Greg Allen

Research papers

Impaired Capacity of Cerebellar Patients to Perceive and Learn Two-Dimensional Shapes Based on Kinesthetic Cues ... 36
Yury Shimansky, Marian Saling, David A. Wunderlich, Vlastislav Bracha,
George E. Stelmach, and James R. Bloedel

Lateral Cerebellar Hemispheres Actively Support Sensory Acquisition and Discrimination Rather Than Motor Control ... 49
Lawrence M. Parsons, James M. Bower, Jia-Hong Gao, Jinhu Xiong, Jinqi Li, and
Peter T. Fox

Cerebellar Guidance of Premotor Network Development and Sensorimotor Learning ... 63
Sherwin E. Hua and James C. Houk

Role of Cerebellum in Adaptive Modification of Reflex Blinks 77
John J. Pellegrini and Craig Evinger

Single-Unit Evidence for Eye-Blink Conditioning in Cerebellar Cortex is Altered, but Not Eliminated, by Interpositus Nucleus Lesions .. 88
Donald B. Katz and Joseph S. Steinmetz

Effect of Varying the Intensity and Train Frequency of Forelimb and Cerebellar Mossy Fiber Conditioned Stimuli on the Latency of Conditioned Eye-Blink Responses in Decerebrate Ferrets 105
Pär Svensson, Magnus Ivarsson, and Germund Hesslow

Conditioned Response Timing and Integration in the Cerebellum 116
John W. Moore and June-Seek Choi

A Model of Pavlovian Eyelid Conditioning Based on the Synaptic Organization of the Cerebellum ... 130
Michael D. Mauk and Nelson H. Donegan
Local Dendritic Ca$^{2+}$ Signaling Induces Cerebellar Long-Term Depression ... 159
Jens Eilers, Hajime Takechi, Elizabeth A. Finch, George J. Augustine, and Arthur Konnerth

Absence of Cerebellar Long-Term Depression in Mice Lacking Neuronal Nitric Oxide Synthase .. 169
Varda Lev-Ram, Zuryash Nebyelul, Mark H. Ellisman, Paul L. Huang, and Roger Y. Tsien

Cover Dissociation of cerebellar attention (yellow and blue) and motor (green and red) activation (yellow and green = overlap in activation of 3 or more subjects; blue and red = overlap of any 2 subjects). Three-dimensional volume rendering of the cerebellum and brain stem demonstrates that during an attention task, the most common site of activation was in the left superior posterior cerebellum, while during a motor task, the most common site was in the right anterior cerebellum. (For details, see Courchesne and Allen, p. 1; image rendered using VoxelView 2.5.)
The following articles appeared last month in the first special issue devoted to learning and the cerebellum, *Learning & Memory*, vol. 3, number 6, March/April 1997

Review

The Cerebellum, LTD, and Memory: Alternative Views
Rodolfo Llinás, Eric J. Lang, and John P. Welsh

Research papers

Preserved Performance by Cerebellar Patients on Tests of Word Generation, Discrimination Learning, and Attention
Laura L. Helmuth, Richard B. Ivry, and Naomi Shimizu

A Neural Model of Cerebellar Learning for Arm Movement Control: Cortico-Spino-Cerebellar Dynamics
Jose L. Contreras-Vidal, Stephen Grossberg, and Daniel Bullock

Multiple Subclasses of Purkinje Cells in the Primate Floccular Complex Provide Similar Signals to Guide Learning in the Vestibulo-ocular Reflex
Jennifer L. Raymond and Stephen G. Lisberger

The Effects of Reversible Inactivation of the Red Nucleus on Learning-Related and Auditory-Evoked Unit Activity in the Pontine Nuclei of Classically Conditioned Rabbits
M. Claire Cartford, Elizabeth B. Gohl, Maria Singson, and David G. Lavond

The Learning-Related Activity That Develops in the Pontine Nuclei During Classical Eye-Blink Conditioning Is Dependent on the Interpositus Nucleus
Robert E. Clark, Elizabeth B. Gohl, and David G. Lavond

Reversible Inactivation of the Cerebellar Interpositus Nucleus Completely Prevents Acquisition of the Classically Conditioned Eye-Blink Response
David J. Krupa and Richard F. Thompson

Acquisition of a New-Latency Conditioned Nictitating Membrane Response—Major, But Not Complete, Dependence on Ipsilateral Cerebellum
Christopher H. Yeo, Dominic H. Lobo, and Alison Baum

Persistent Phosphorylation Parallels Long-Term Desensitization of Cerebellar Purkinje Cell AMPA-Type Glutamate Receptors
Kazutoshi Nakazawa, Sumiko Mikawa, and Masao Ito