C. elegans II
Monograph 33
Edited by Donald L. Riddle, University of Missouri, Columbia; Thomas Blumenthal, Indiana University; Barbara J. Meyer, University of California, Berkeley; and James R. Priess, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle

Studies of the cells and genes of the nematode C. elegans have become a cornerstone of current biology. A classic 1988 Cold Spring Harbor monograph described the basic genetics, anatomy and development of the organism. Now, in that authoritative tradition, comes C. elegans II — not a second edition but a book that breaks new ground and defines the current status of the field, providing a detailed molecular explanation of how development is regulated and the nervous system specifies varied aspects of behavior. This volume is a must for any investigator doing worm studies but it has been written and rigorously edited to illuminate for a wider community of investigators in cell and molecular biology who should know how new knowledge of C. elegans relates to their own specialty.

CONTENTS
Preface (B. Alberts)
Foreword (S. Brenner)
Introduction to C. elegans (D.L. Riddle, T. Blumenthal, B.J. Meyer, J.R. Priess); The Genome (R.H. Waterston, J.E. Sulston, A.R. Coulson); Chromosome Organization, Mitosis, and Meiosis (D.G. Albertson, A.M. Rose, A.M. Villeneuve); Mutation (R.C. Johnsen, D.L. Baillie); Transposons (R.H.A. Plasterk, H.G.A.M. van Luenen); RNA Processing and Gene Structure (T. Blumenthal, K. Stewart); Transcription Factors and Transcriptional Regulation (J.D. McGhee, M.W. Krause); mRNA and Translation (P. Anderson, J. Kimble); Sex Determination and X Chromosome Dosage Compensation (B.J. Meyer); Developmental Genetics of the Germ Line (T. Scheld); Spermatogenesis (S.W. L'Hernault); Male Development and Mating Behavior (S.W. Emmons, P.W. Sternberg); Fertilization and Establishment of Polarity in the Embryo (K.J. Kemphues, S. Strome); Specification of Cell Fates in the Early Embryo (R. Schnabel, J.R. Priess); Cell Death (M.O. Hengartner); Muscle: Structure, Function, and Development (D.G. Moerman, A. Fire); Extracellular Matrix (J.M. Kramer); Heterochronic Genes (V. Ambros); Development of the Vulva (I. Greenwald); Patternning the Nervous System (G. Ruvkun); Cell and Growth Cone Migrations (A. Antebi, C.R. Norris, E.M. Hedgecock, G. Garriga); Synaptic Transmission (J.B. Rand, M.L. Nonet); Mechanotransduction (M. Driscoll, J. Kaplan); Feeding and Defecation (L. Avery, J.H. Thomas); Chemotaxis and Thermotaxis (C.I. Bargmann, I. Mori); Genetic and Environmental Regulation of Dauer Larval Development (D.L. Riddle, P.S. Alberti); Neural Plasticity (E.M. Jorgensen, C. Rankin); Environmental Factors and Gene Activities That Influence the Life Span (C. Kenyon); Evolution (D.H.A. Fitch, W.K. Thomas); Parasitic Nematodes (M. Blaxter, D. Bird)

Appendices

Bibliography
1997, 1222 pp., illus., color plates, index

Also available:
The Nematode Caenorhabditis elegans
Monograph 17
Edited by William B. Wood, University of Colorado, Boulder
1988, 667 pp., illus., appendices, bibliography index
Editorial .. vi

Review

The Cerebellum, LTD, and Memory: Alternative Views .. 445
Rodolfo Llinás, Eric J. Lang, and John P. Welsh

Research papers

Preserved Performance by Cerebellar Patients on Tests of Word
Generation, Discrimination Learning, and Attention ... 456
Laura L. Helmuth, Richard B. Ivry, and Naomi Shimizu

A Neural Model of Cerebellar Learning for Arm Movement
Control: Cortico-Spino-Cerebellar Dynamics .. 475
Jose L. Contreras-Vidal, Stephen Grossberg, and Daniel Bullock

Multiple Subclasses of Purkinje Cells in the Primate Floccular
Complex Provide Similar Signals to Guide Learning in the
Vestibulo-Ocular Reflex .. 503
Jennifer L. Raymond and Stephen G. Lisberger

The Effects of Reversible Inactivation of the Red Nucleus on
Learning-Related and Auditory-Evoked Unit Activity in the
Pontine Nuclei of Classically Conditioned Rabbits .. 519
M. Claire Cartford, Elizabeth B. Gohl, Maria Singson, and David G. Lavond

The Learning-Related Activity That Develops in the Pontine
Nuclei During Classical Eye-Blink Conditioning Is Dependent
On the Interpositus Nucleus .. 532
Robert E. Clark, Elizabeth B. Gohl, and David G. Lavond

Reversible Inactivation of the Cerebellar Interpositus Nucleus
Completely Prevents Acquisition of the Classically Conditioned
Eye-Blink Response .. 545
David J. Krupa and Richard F. Thompson
Acquisition of a New-Latency Conditioned Nictitating Membrane Response—Major, but Not Complete, Dependence on the Ipsilateral Cerebellum .. 557
Christopher H. Yeo, Dominic H. Lobo, and Alison Baum

Persistent Phosphorylation Parallels Long-Term Desensitization of Cerebellar Purkinje Cell AMPA-Type Glutamate Receptors 578
Kazutoshi Nakazawa, Sumiko Mikawa, and Masao Ito

Author Index, Volume 2 ... 592

Subject Index, Volume 2 ... 593

Author Index, Volume 3 ... 595

Subject Index, Volume 3 ... 596

Cover Dissociation of cerebellar attention (yellow and blue) and motor (green and red) activation (yellow and green = overlap in activation of 3 or more subjects; blue and red = overlap of any 2 subjects). Three-dimensional volume rendering of the cerebellum and brain stem demonstrates that during an attention task, the most common site of activation was in the left superior posterior cerebellum, while during a motor task, the most common site was in the right anterior cerebellum. (For details, see Courchesne and Allen, volume 4, p. 1; image rendered using VoxelView 2.5.)
Coming next month in Learning & Memory, vol. 4, number 1, May/June 1997, the second special issue devoted to the cerebellum

Review

Prediction and Preparation, Fundamental Functions of the Cerebellum
Eric Courchesne and Greg Allen

Research Papers

Impaired Capacity of Cerebellar Patients to Perceive and Learn Two-Dimensional Shapes Based on Kinesthetic Cues
Yury Shimansky, Marian Saling, David A. Wunderlich, Vlastislav Bracha, George E. Stelmach, and James R. Bloedel

Lateral Cerebellar Hemispheres Actively Support Sensory Acquisition and Discrimination Rather Than Motor Control
Lawrence M. Parsons, James M. Bower, Jia-Hong Gao, Jinhu Xiong, Jinqi Li, and Peter T. Fox

Cerebellar Guidance of Premotor Network Development and Sensorimotor Learning
Sherwin E. Hua and James C. Houk

Role of Cerebellum in Adaptive Modification of Reflex Blinks
John J. Pellegrini and Craig Evinger

Single-Unit Evidence for Eye-Blink Conditioning in Cerebellar Cortex is Altered, but Not Eliminated, by Interpositus Nucleus Lesions
Donald B. Katz and Joseph E. Steinmetz

Effect of Varying the Intensity and Train Frequency of Forelimb and Cerebellar Mossy Fiber Conditioned Stimuli on the Latency of Conditioned Eye-Blink Responses in Decerebrate Ferrets
Pär Svensson, Magnus Ivarsson, and Germund Hesslow

Conditioned Response Timing and Integration in the Cerebellum
John W. Moore and June-Seek Choi

A Model of Pavlovian Eyelid Conditioning Based on the Synaptic Organization of the Cerebellum
Michael D. Mauk and Nelson H. Donegan

Local Dendritic Ca$^{2+}$ Signaling Induces Cerebellar LTD
Jens Elers, Hajime Takechi, Elizabeth A. Finch, George J. Augustine, and Arthur Konnerth

Absence of Cerebellar Long-Term Depression in Mice Lacking Neuronal Nitric Oxide Synthase
Varda Lev-Ram, Zuryash Nebyelul, Mark H. Ellisman, Paul Huang, and Roger Y. Tsien
The cerebellum has intrigued neuroscientists for more than a century. This fascination is in part due to its unique macroscopic appearance and the fact that it occupies a significant percentage of the brain. At the microscopic level, the beauty of its cellular architecture is universally appreciated. The limited number of cell types and the apparent modularity of its cellular organization have raised the possibility that the cerebellum will be the first brain structure to be understood completely. The structure is intrinsically appealing, but what is its function and importance? Based on evolutionary considerations alone, it appears to be quite important. For example, during the past 10 million years, the size of the cerebellum has increased in greater proportion to other brain structures, including the cerebral cortex. The question of its function is less clear. Historically, the cerebellum was considered to be important for motor function. Based on the comparison of the sizes of cerebella in different species having different postural demands, the prevailing view in the early part of this century was that the cerebellum was critical for the control of posture. In reviewing these considerations, Cajal, in 1914, concurred with this view. Moreover, he stated “It should be obvious already that the cerebellum has nothing to do with consciousness or other higher functions.”

However, over the past 20 years, research has seriously challenged the traditional views of the cerebellum’s exclusive role in postural control. Beginning with the theoretical work of Marr, and the empirical work of Ito, Thach, and their colleagues, it became clear that the domain of the cerebellum extends beyond postural control. It is involved in motor learning, as well. Moreover, a specific form of synaptic plasticity, long-term depression (LTD) at the parallel fiber–Purkinje cell connection, has been implicated in the motor learning mediated by the cerebellum. But studies of patients with cerebellar dysfunction, as well as recent positron emission tomography (PET) and functional magnetic resonance imagery (fMRI) studies, raise the possibility of a greatly expanded range of cerebellar function. These include attention, associative learning, practice-related learning, procedural learning, declarative memory, working memory, semantic association, conditioned anxiety, mental exploration, and complex reasoning and problem solving, as well as sensory, motor, and motor skill acquisition.

Despite the tremendous advances in cerebellum research at the anatomical, biophysical, and systems levels, there is still no general theory that encompasses and explains the functional role played by the cerebellum in these diverse motor and nonmotor domains. Indeed, there is significant debate whether the cerebellum does in fact subserve all of these diverse functions. Even the role of the cerebellum in motor learning itself has been questioned. Because of the intense interest in the cerebellum in general, and its role in motor learning in particular, Learning & Memory has devoted two special issues to this topic. We cover the cerebellum’s role from the molecular to systems approaches, with techniques ranging from cell culture to brain imaging. The approaches of mathematical modeling and computer simulations are also represented, because these raise the possibility of generating testable models of cerebellar function and tests of theories of the computations that are performed by the cerebellum. These special issues certainly advance the understanding of the cerebellum, but as these issues illustrate, the field has not yet matured to the point of a general framework of cerebellar function. Learning & Memory will serve as a vehicle to foster the continued exchange of information and debate in those areas.

John H. Byrne
Editor