Strategies for Protein Purification and Characterization
A Laboratory Course Manual

By Daniel R. Marshak, Cold Spring Harbor Laboratory; James T. Kadonaga, Department of Biology, University of California, San Diego; Richard R. Burgess, University of Wisconsin, Madison, and Mark W. Knuth, Promega Corporation, Madison, Wisconsin; William A. Brennan, Jr., Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, and Sue-Hwa Lin, University of Texas M.D. Anderson Cancer Center

Investigators who have identified and cloned a gene of interest often want to isolate and characterize the protein product, yet the methods required are notoriously tricky for the inexperienced. For the past four years, a course has been held at Cold Spring Harbor Laboratory to teach scientists how to execute the major protein techniques by applying them to four distinct, representative types of molecule: a regulatory protein, a DNA-binding protein, a recombinant protein, and a membrane-bound receptor. This course has now been adapted in the form of a laboratory manual that covers a variety of bulk fractionation, electrophoretic, and chromatographic techniques. Step-by-step protocols are accompanied by troubleshooting advice and guidance on generalizing the techniques for other classes and types of protein. The emphasis throughout is on strategies for purification and characterization rather than automated instrumental analysis.

After years of rigorous testing, these techniques are robust and reliable, and are presented here with the clarity and completeness for which Cold Spring Harbor manuals are celebrated. The book is invaluable for specialists in genetics, microbiology, neuroscience, and cell biology who wish to develop expertise in working with proteins.

CONTENTS

Foreword by James E. Rothman
Introduction
How to Use This Manual

UNIT I: PURIFICATION OF CALMODULIN
Introduction
Experiment 1: Activity Assays: Assay of Calmodulin Fractions
Experiment 2: Preparation of a Tissue Extract
Experiment 3: Bulk Fractionation
Experiment 4: Ion-exchange Chromatography
Experiment 5: Hydrophobic Interaction Chromatography
Experiment 6: Characterization of Calmodulin: Calculation of Recovery
Experiment 7: Characterization of Calmodulin: Electrophoresis
Experiment 8: Proteolytic Digestion
Experiment 9: Reverse-phase HPLC
Experiment 10: Physical Analysis of Calmodulin

Preparation of Reagents

References

UNIT II: PURIFICATION OF TRANSCRIPTION FACTOR AP-1 FROM HEla CELLS
Introduction
Experiment 1: Preparation of a Nuclear Extract from HeLa Cells
Experiment 2: Gel Filtration Chromatography with Sephacryl S-300 HR
Experiment 3: Sequence-specific DNA Affinity Chromatography
Experiment 4: DNase I Footprinting
Experiment 5: Gel Mobility-shift Assay
Experiment 6: Preparation of Heparin-Sepharose CL-2B

Preparation of Reagents

References

UNIT III: PURIFICATION OF A RECOMBINANT PROTEIN OVERPRODUCED IN ESCHERICHIA COLI
Introduction
Experiment 1: Breakage of E. coli Cells and Preparation of Inclusion Bodies
Experiment 2: Solubilization, Refolding, and Ion-exchange Chromatography of the Inclusion Body Pellet (σ32)
Experiment 3: Polyethyleneimine Precipitation and Immunoaffinity Chromatography of the Soluble Extract (Core RNA Polymerase-σ32 Complex)
Experiment 4: Quantitation and Summary of Preparation
Experiment 5: Protein Characterization
Protocol Development Trials: Purification of σ32 from a Bacterial Overexpresser
Preparation of Reagents

References

UNIT IV: SOLUBILIZATION AND PURIFICATION OF THE RAT LIVER INSULIN RECEPTOR
Introduction
Experiment 1: Isolation of Plasma Membranes from Rat Liver
Experiment 2: Solubilization of Insulin Receptor from Membranes
Experiment 3: Lectin Affinity Chromatography of Solubilized Receptors
Experiment 4: Insulin Affinity Chromatography of Partially Purified Receptors
Experiment 5: Cross-linking of Insulin Receptors with [125I] Insulin
Experiment 6: Insulin-stimulated Insulin Receptor Autophosphorylation
Experiment 7: Analysis of Insulin Receptor Glycosylation

Preparation of Reagents

Appendices

1996, 396 pp., illus., appendices, indexes
Plastic comb binding $85 ISBN 0-87969-385-1
Review

A Biochemist's View of Long-term Potentiation .. 1
Erik D. Roberson, Joey D. English, and J. David Sweatt

Research papers

c-Fos Induction in the Rat Nucleus of the Solitary Tract Correlates with the Retention and Forgetting of a Conditioned Taste Aversion .. 25
Thomas A. Houpt, Jennifer M. Philopena, Tong H. Joh, and Gerard P. Smith

Transient Expression of c-Fos in Rat Amygdala During Training Is Required for Encoding Conditioned Taste Aversion Memory .. 31
Raphael Lamprecht and Yadin Dudai

Examination of the Role of cGMP in Long-term Potentiation in the CA1 Region of the Hippocampus ... 42
David K. Selig, Michele R. Segal, Dezhi Liao, Robert C. Malenka, Roberto Malinow, Roger A. Nicoll, and John E. Lisman

Conditioned Visual Flight Orientation in Drosophila: Dependence on Age, Practice, and Diet ... 49
Aike Guo, Liu Li, Xia Shou-zhen, Feng Chun-hua, Reinhard Wolf, and Martin Heisenberg

Cover c-Fos translation in the amygdala during or immediately after CTA training is essential for encoding taste aversion memory. Shown are sites of microinjection in this study reported by Lamprecht and Dudai (see pp. 31–41). (Brain sections are adapted from the atlas of Paxinos and Watson 1986.)