PCR Primer: A Laboratory Manual

Edited by Carl Dieffenbach, National Institute of Allergy and Infectious Diseases, Gabriela Dveksler, Uniformed Services University of the Health Sciences

From its first-published account in 1985, the polymerase chain reaction has become a standard research tool in a wide range of laboratories. Its impact has been felt in basic molecular biological research, clinical research, forensics, evolutionary studies, and the Human Genome Project. The PCR technique originally conceived by Nobel laureate Kary Mullis has proven to be exceptionally adaptable and has been transformed into a myriad array of methods, each with different applications.

PCR Primer: A Laboratory Manual introduces the complex world of PCR by beginning at an accessible level and then moving to more advanced levels of application. First, the practical requirements for performing PCR and other amplification techniques in the lab are introduced and then the basic aspects of the technique are explained by exploring important issues such as sample preparation, primer design, efficiency, detection of products, and quantitation. Protocols for a wide range of PCR and amplification techniques—each written by an expert investigator—are presented for cloning, sequencing, mutagenesis, library construction and screening, exon trapping, differential display, and expression, and these include RT-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3′ and 5′ RACE, in situ PCR, and ligation-mediated PCR. Each protocol is augmented by analysis and troubleshooting sections and complete references.

CONTENTS

Introduction to PCR
Setting Up a PCR Laboratory (C.W. Dieffenbach et al.); A Standard PCR Protocol: Rapid Isolation of DNA and PCR Assay for β-Globin (M.T. Vahey et al.); Enzymatic Control of Carryover Contamination in PCR (J.L. Hartley, A. Rashchian); Ultraviolet Irradiation of Surfaces to Reduce PCR Contamination (R.W. Cone, M.R. Fairfax); Specificity, Efficiency, and Fidelity of the PCR (R.S. Cha, W.G. Thilly); Optimization and Troubleshooting in PCR (K.H. Roux); Long-Distance PCR (O.S. Foord, E.A. Rose)

Sample Preparation
Rapid Preparation of DNA for PCR Amplification with Gene Release™ (E.P. Dawson et al.); PCR Amplification from Paraffin-embedded Tissues: Sample Preparation and the Effects of Fixation (C.E. Greer et al.); RNA Purification (J.J. Adamovicz, W.C. Gause)

Primer Design
General Concepts for PCR Primer Design (C.W. Dieffenbach et al.); Design and Use of Mismatched and Degenerate Primers (S. Kwok et al.); Multiplex PCR (M.C. Edwards, R.A. Gibbs)

Detection of PCR Products: Quantitation and Analysis
Immunological Detection of PCR Products (J.G. Lazar); Quantitative PCR Using the AmpliSensor Assay (C.N. Wang); DNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); RFLP Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); In Situ PCR (G.J. Nuovo); Single-strand Conformational Polymorphism (K. Fujita, J. Silver); Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay (E.L. Delwart et al.); Sensitive and Fast Mutation Detection by Solid-phase Chemical Cleavage (L.L. Hansen et al.)

PCR Starting from RNA
Use of the PCR to Quantitate Relative Differences in Gene Expression (W.C. Gause, J.J. Adamovicz); Quantitative Liquid Hybridization PCR Method Employing Storage Phosphor Technology (M.T. Vahey, M.T. Wong); Use of the SNuPE Assay to Quantitate Allele-specific Sequences Differing by a Single Nucleotide (J. Singer-Sam); Trapping Internal and 3′-Terminal Exons (P.E. Nisson et al.); Expression-PCR (D.E. Lanar, K.C. Kain)

PCR-mediated Cloning
Rapid Amplification of cDNA Ends (M.A. Frohman); Panhandle PCR (D.H. Jones); Detection and Identification of Expressed Genes by Differential Display (P. Warthoe et al.); Construction of Subtractive cDNA Library Using Magnetic Beads and PCR (A. Lonneborg); PCR-based Method for Screening DNA Libraries (D.J. Israel); Screening of YAC Libraries with Robotic Support (M.M. Blanchard, V. Nowotny); Phagemid Display Libraries Derived from PCR-immortalized Rearranged Immunoglobulin Genes (H.H. Hogrefe, B. Shopes)

PCR Sequencing
Direct Sequencing of PCR-amplified DNA (V.B. Rao); Cycle Sequencing (K. Kretz et al.)

Cloning of PCR Products
Strategies for Cloning PCR Products (R. Levis); Cloning and Analysis of PCR-generated Fragments (G.L. Costa, M.P. Weiner)

Mutagenesis by PCR
Mutagenic PCR (R.C. Cadwell, G.F. Joyce); PCR Mutagenesis and Recombination In Vivo (D.H. Jones); Mutagenesis and Synthesis of Novel Recombinant Genes Using PCR (A.N. Vallejo et al.); Rapid PCR Site-directed Mutagenesis (M.P. Weiner, G.L. Costa)

Alternative Amplification Technologies
Ligase Chain Reaction (M. Weidmann et al.); Optimization and Characterization of 3SR-based Assays (T.R. Gingeras et al.); One-tube Quantitative HIV-1 RNA NASBA (B. van Gemen et al.)

Appendices
Computer Software for Selecting Primers; Reagents and Equipment

1995, 625 pp. (approx.), illus., appendices, index

Cloth $160 ISBN 0-87969-447-5

Plastic comb binding $95 ISBN 0-87969-448-3

To order, or request additional information

Call: 1-800-843-4388 (Continental U.S. and Canada) 516-349-1930 (All other locations)

FAX: 516-349-1946

E-MAIL: cshpress@cshl.org or World Wide Web Site http://www.cshl.org/

Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500
Review

Behavioral Development in the Honey Bee: Toward the Study of Learning Under Natural Conditions .. 199
Susan E. Fahrbach and Gene E. Robinson

Research papers

Learning "What" and "How" in a Human Motor Task 225
Vernon Brooks, Frank Hilperath, Martin Brooks, Hans-Georg Ross, and Hans-Joachim Freund

Metabotropic Glutamate Receptors in Spatial and Nonspatial Learning in Rats Studied by Means of Agonist and Antagonist Application ... 243
Gernot Riedel, Wolfram Wetzel, and Klaus G. Reymann

Cover Transverse section through the brain of a worker honey bee. (For details, see Fahrbach and Robinson, p. 199.)