THE CONDENSED PROTOCOLS
FROM MOLECULAR CLONING: A LABORATORY MANUAL

By Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia, and David Russell, University of Texas Southwestern Medical Center, Dallas

The Condensed Protocols From Molecular Cloning: A Laboratory Manual is a single-volume adaptation of the three-volume third edition of Molecular Cloning: A Laboratory Manual. This condensed book contains only the step-by-step portions of the protocols, accompanied by selected appendices from the world’s best-selling manual of molecular biology techniques. Each protocol is cross-referenced to the appropriate pages in the original manual. This affordable companion volume, designed for bench use, offers individual investigators the opportunity to have their own personal collection of short protocols from the essential Molecular Cloning.

2006, 800 pp., illus., appendices, index
Hardcover $150
Paperback $95

REVIEWs OF MOLECULAR CLONING: A LABORATORY MANUAL, 3rd ed.

"Any basic research laboratory using molecular biology techniques will benefit from having a copy [of Molecular Cloning] on hand... Originally published almost 20 years ago, the first two editions of this book have set a standard of molecular biology with a proven reputation for accuracy and thoroughness." —Trends in Microbiology

"The next generation of Molecular Cloning not only carries on the proud heritage of the first two editions but also admirably expands on that tradition to provide a truly essential laboratory manual." —Trends in Microbiology

"This book should be the first port of call when establishing a molecular technique new to a laboratory." —Trends in Cell Biology

"...with this new edition and its companion website, Molecular Cloning has once again established its primacy as the molecular laboratory manual and is likely to be found on lab benches, and bookmarked on web browsers, around the world." —Trends in Neurosciences

Contents
1. Using Plasmid Vectors in Molecular Cloning
2. Bacterial Phage λ and Its Vectors
3. Working with Bacteriophage M13 Vectors
4. Working with High-capacity Vectors
5. Gel Electrophoresis of DNA and Polyacrylamide Gel Electrophoresis
6. Preparation and Analysis of Eukaryotic Genomic DNA
7. Extraction, Purification, and Analysis of mRNA from Eukaryotic Cells
8. In Vitro Amplification of DNA by the Polymerase Chain Reaction
9. Preparation of Radiolabeled DNA and RNA Probes
10. DNA sequencing
11. Preparing DNA Libraries and Gene Identifiers
12. DNA Sequencing
13. Monitoring
14. Scanning Exposures
15. Expression of Cloned Genes in Eukaryotic Cells
16. Introduction Cloned Genes into Cultured Mammalian Cells
17. Analysis of Gene Expression in Mammalian Cells
18. Protein Interaction Technologies
19. Oligonucleotide Probes
20. DNA libraries
21. DNA Sequencing
22. DNA Libraries
23. DNA Sequencing
24. DNA Libraries
25. DNA Sequencing
26. DNA Libraries
27. DNA Sequencing
28. DNA Libraries
29. DNA Sequencing
30. DNA Libraries
31. DNA Sequencing
32. DNA Libraries
33. DNA Sequencing
34. DNA Libraries
35. DNA Sequencing
36. DNA Libraries
37. DNA Sequencing
38. DNA Libraries
39. DNA Sequencing
40. DNA Libraries
41. DNA Sequencing
42. DNA Libraries
43. DNA Sequencing
44. DNA Libraries
45. DNA Sequencing
46. DNA Libraries
47. DNA Sequencing
48. DNA Libraries
49. DNA Sequencing
50. DNA Libraries
51. DNA Sequencing
52. DNA Libraries
53. DNA Sequencing
54. DNA Libraries
55. DNA Sequencing
56. DNA Libraries
57. DNA Sequencing
58. DNA Libraries
59. DNA Sequencing
60. DNA Libraries
61. DNA Sequencing
62. DNA Libraries
63. DNA Sequencing
64. DNA Libraries
65. DNA Sequencing
66. DNA Libraries
67. DNA Sequencing
68. DNA Libraries
69. DNA Sequencing
70. DNA Libraries
71. DNA Sequencing
72. DNA Libraries
73. DNA Sequencing
74. DNA Libraries
75. DNA Sequencing
76. DNA Libraries
77. DNA Sequencing
78. DNA Libraries
79. DNA Sequencing
80. DNA Libraries
81. DNA Sequencing
82. DNA Libraries
83. DNA Sequencing
84. DNA Libraries
85. DNA Sequencing
86. DNA Libraries
87. DNA Sequencing
88. DNA Libraries
89. DNA Sequencing
90. DNA Libraries
91. DNA Sequencing
92. DNA Libraries
93. DNA Sequencing
94. DNA Libraries
95. DNA Sequencing
96. DNA Libraries
97. DNA Sequencing
98. DNA Libraries
99. DNA Sequencing
100. DNA Libraries

The Strongest Boy in the World
How Genetic Information is Reshaping Our Lives

By Philip R. Reilly

Philip R. Reilly is a physician, geneticist, and a lawyer. He is also a storyteller. His new book, The Strongest Boy in the World: How Genetic Information is Reshaping Our Lives, contains twenty engaging stories each of which offers the reader a delightful excursion that will expand his worldview. As tour guide, Reilly is passionately committed to ensuring that intriguing discoveries lie around every bend in the road. Whether it is speculating on the impact of genetics on the future of sport, the evolutionary origins of humans, the mysteries of genetic diseases, the similarities between dogs and people, the impact of genetic engineering on what we eat, or the ethical dimensions of stem cell research, Reilly offers up spell binding tales. In each of the twenty chapters, he deftly reviews complex scientific and medical information in a manner that offers the reader the facts necessary to debate the value questions.

2006, 278 pp., illus., bibliography, index
Hardcover $29

Contents
Introduction
1. The Strongest Boy in the World
2. Our Ancestors
3. Race
4. Longevity
5. Intelligence
6. Charcot-Marie-Tooth Disease
7. Huntington’s Disease
8. AIDS
9. San Luis Valley Syndrome
10. Severe Combined Immune Deficiency
11. Dogs
12. Cats
13. Mice
14. Corn
15. Rice
16. History
17. DNA Forensics
18. Art and Language
19. Preimplantation Genetic Diagnosis
20. Stem Cells

About the author:
Philip R. Reilly is CEO of Interleukin Genetics, Inc. in Waltham, Massachusetts. From 1990 to 2000 he was the Executive Director of the Emmaneau Kennedy Shriver Center for Mental Retardation, Inc. Dr. Reilly has held faculty appointments at Harvard Medical School, Brandeis University, and Tufts University School of Medicine. For three years he was member of the Board of Directors of the American Society of Human Genetics. He has twice (2000, 2003) served as President of the American Society of Law, Medicine, & Ethics, a not-for-profit organization located in Boston. He has served on many national committees chartered to explore public policy issues raised by advances in genetics and is frequently asked to comment on these topics in the national media. He is the author of six books and has published more than 100 articles.

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)
FAX: 516-422-4097
E-mail: cspress@cshl.edu or WWW Site http://www.cshlpress.com/
Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd, Woodbury, NY 11797-2924

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)
FAX: 516-422-4097
E-mail: cspress@cshl.edu or WWW Site http://www.cshlpress.com/
Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd, Woodbury, NY 11797-2924
THE CONDENSED PROTOCOLS FROM MOLECULAR CLONING: A LABORATORY MANUAL

By Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia, and David Russell, University of Texas Southwestern Medical Center, Dallas

The Condensed Protocols From Molecular Cloning: A Laboratory Manual is a single-volume adaptation of the three-volume third edition of Molecular Cloning: A Laboratory Manual. This condensed book contains only the step-by-step portions of the protocols, accompanied by selected appendices from the world's best-selling manual of molecular biology techniques. Each protocol is cross-referenced to the appropriate pages in the original manual. This affordable companion volume, designed for bench use, offers individual investigators the opportunity to have their own personal collection of short protocols from the essential Molecular Cloning.

2006, 800 pp., illus., appendices, index

REVIEWS OF MOLECULAR CLONING: A LABORATORY MANUAL, 3rd ed.

"Any basic research laboratory using molecular biology techniques will benefit from having a copy of Molecular Cloning on hand. . Originally published almost 20 years ago, the first two editions of this book have set a standard for molecular biology with a proven reputation for accuracy and thoroughness." — The Scientist

"The next generation of Molecular Cloning not only carries on the proud heritage of the first two editions but also admirably expands on that tradition to provide a truly essential laboratory manual." — Trends in Microbiology

"This book should be the first port of call when establishing a molecular technique new to a laboratory." — Trends in Cell Biology

...with this new edition and its companion website, Molecular Cloning has once again established its primacy as the molecular biological techniques reference book, and is likely to be found on lab benches, and bookmarked on web browsers, around the world." — Trends in Neurosciences

Contents

1. Using Plasmid Vectors in Molecular Cloning
2. Bacteriophage λ and In Vectors
3. Working with Bacteriophage M13 Vectors
4. Working with High-capacity Vectors
5. Gel Electrophoresis of DNA and Pulsed-field Agarose Gel Electrophoresis
6. Preparation and Analysis of Eukaryotic Genomic DNA
7. Extraction, Purification, and Analysis of mRNA from Eukaryotic Cells
8. In Vitro Amplification of DNA by the Polymerase Chain Reaction
9. Preparation of Radiolabeled DNA and RNA Probes
10. Working with Synthetic Oligonucleotides
11. Preparation of cDNA Libraries and Gene Identifiers
12. DNA Sequencing
13. Microarrays
14. Scanning for Essential Genes
15. Expression of Cloned Genes in Escherichia coli
16. Introducing Cloned Genes into Cultured Mammalian Cells
17. Analysis of Genes in Mammalian Cells
18. Protein Interaction Technologies
19. Appendix
20. Index

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)
FAX: 516-422-4097
E-mail: cshpress@cshl.edu or WWW Site http://www.cshlpress.com/
Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd, Woodbury, NY 11797-2924

THE STRONGEST BOY IN THE WORLD

How Genetic Information is Reshaping Our Lives

By Philip R. Reilly

Philip R. Reilly is a physician, geneticist, and a lawyer. He is also a storyteller. His new book, The Strongest Boy in the World: How Genetic Information is Reshaping Our Lives, contains twenty engaging stories each of which offers the reader a delightful excursion that will expand their worldview. As tour guide, Reilly is passionately committed to ensuring that intriguing discoveries lie around every bend in the road. Whether it is speculating on the impact of genetics on the future of sport, the evolutionary origins of humans, the mysteries of genetic diseases, the similarities between dogs and people, the impact of genetic engineering on what we eat, or the ethical dimensions of stem cell research, Reilly offers up spell binding tales. In each of the twenty chapters, he deftly reviews complex scientific and medical information in a manner that offers the reader the facts necessary to debate the value questions.

2006, 278 pp., illus., bibliography, index

About the author:
Philip R. Reilly is CEO of Interleukin Genetics, Inc. in Weltham, Massachusetts. From 1990 to 2000 he was the Executive Director of the Eunice Kennedy Shriver Center for Mental Retardation, Inc. Dr. Reilly has held faculty appointments at Harvard Medical School, Brandeis University, and Tufts University School of Medicine. For three years he was member of the Board of Directors of the American Society of Human Genetics. He has twice (2000, 2003) served as President of the American Society of Law, Medicine, & Ethics, a not-for-profit organization located in Boston. He has served on many national committees chartered to explore public policy issues raised by advances in genetics and is frequently asked to comment on these topics in the national media. He is the author of six books and has published more than 100 articles.

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)
FAX: 516-422-4097
E-mail: cshpress@cshl.edu or WWW Site http://www.cshlpress.com/
Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd, Woodbury, NY 11797-2924

How the First Test Tube Babies Sparked the Reproductive Revolution

By Robin Marantz Henig

This is the highly acclaimed book by Robin Marantz Henig about the early days of in vitro fertilization (IVF) and the ethical and legal battles waged in the 1970s, as well as the scientific advances that eventually changed the public perception of "test tube babies." Published in paperback for the first time, this timely and provocative book brilliantly presents the scientific and ethical dilemmas in the ongoing debate over what it means to be human in a technological age.

Paperback $15.95
ISBN 0-87969-809-8

CONTENTS

Prologue: Monster in a Test Tube
Part One: Ex Ovo Omnia
1. Room Temperature 9. Science on Hold
2. The Dance of Love 10. The First One
3. Laughingstock 11. A Baby Clone
4. Out of Control 12. Hang On
5. Fire and Stars 13. Fertilizing Mother Nature
6. Laboratory Ghosts 14. Pandora's Baby
Part Two: The Modern Prometheus
7. Toward Happily Ever After 15. Normality
10. The First One 18. Right to Life
11. A Baby Clone 19. Opening Pandora's Box
Part Three: Test Tube Death Titl
22. Pandora's Clones
23. Mixed Blessings
Selected Readings
Notes
Acknowledgments
Index

Reviews of the hardcover edition:

"Pandora's Baby is an engrossing, hard-to-put-down read telling how a once highly controversial potential advance becomes a widely appreciated tool for today's life."
—James D. Watson, Ph.D., Nobel laureate and author of The Double Helix and DNA: The Secret of Life

"Pandora's Baby is informative, thought-provoking, and gracefully written. With the voice of a good storyteller and the authority of a careful researcher, Henig brilliantly probes the moral, philosophical, and social issues surrounding that most intricate of all scientific endeavors: the creation of humans."
—Alice L. Templeton, author of Discovering Dreams

"Fortunately, whether you have to explain the newest facts of life or simply want to understand them yourself, you can now turn to Robin Marantz Henig's beautifully written and timely book on the way in vitro (Latin for "in glass") fertilization, or I.V. E., began with the tinkering of a few researchers during the 1960s, and how it became widely available... Washington has refused to pay for the most contentious areas of reproductive research. Yet in an age where for-profit companies and university scientists often become partners in the hope of making it rich, it is no longer possible to close Pandora's box."
—The New York Times

"We don't know when reproductive technology ultimately will take society, Henig concludes, but it's likely that we will adapt to new discoveries the way we have so often adapted. Her level-headed book provides a welcome content for the current debate over cloning."
—Publishers Weekly

About the author: Robin Marantz Henig is the author of eight books. Her previous book, The Mist in the Garden: The Last and Friendliest Century of Gregor Mendel, was a finalist for the National Book Critics Circle Award. She writes about science and medicine for the New York Times Magazine, where she is a contributing writer, as well as for publications such as Scientific American, Smithsonian, and The Washington Post.

To order or request additional information:
Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)
FAX: 516-422-4097
E-mail: cshpress@cshl.edu or WWW Site http://www.cshlpress.com/
Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd, Woodbury, NY 11797-2924
By Michael Ashburner, University of Cambridge, England

This is the story of the sequencing of the fly genome as told by one of the participants, Michael Ashburner. Written in a diary–like form, half the story is told in numerous footnotes. Ashburner has written a delightful, candid, irreverent, on–the–scene tale filled with eccentric personalities all focused on a single goal.

The book also contains an Epilogue that puts Drosophila as a model system in historical context, and an Afterword that discusses the impact the genome sequence has had on the study of Drosophila. Also included are portraits by Lewis Miller of some of the principal characters.

2006, 107pp., illus.
Hardcover $19.95
ISBN 0-87969-802-0

About the Author:
Michael Ashburner is Professor of Biology in the Department of Genetics at the University of Cambridge. By training and inclination, he is a Drosophila geneticist, although for more than a decade, he has not been where he belongs—the lab bench—but in front of computer screens. He spent six years at the European Bioinformatics Institute, first as the Institute’s Research Programme Coordinator, and then as its Joint-Head. He is a Fellow of the Royal Society and an Honorary Foreign Member of the American Academy of Arts and Sciences.